沸石轉輪—催化氧化VOCs治理裝置在包裝行業(yè)中的應用
原標題:沸石轉輪—催化氧化VOCs治理裝置在包裝行業(yè)中的應用
摘要:介紹了一種將沸石轉輪與催化氧化技術協(xié)同組合并用于揮發(fā)性有機化合物(VOCs)廢氣治理的裝置。通過對包裝行業(yè)所排放的VOCs廢氣風量、VOCs成分及其質(zhì)量濃度與特性的研究,結合實際案例分析,發(fā)現(xiàn)采用疏水性分子篩的沸石轉輪與催化氧化組合裝置具有高去除率與高經(jīng)濟性效果。某生產(chǎn)線所排放的廢氣風量約為m~3/h(標準狀態(tài)),質(zhì)量濃度為53.03mg/m3,符合大風量低質(zhì)量濃度的特性。治理后,廢氣中的苯、甲苯、二甲苯、非甲烷烴(NMHC)的去除效率可達98%以上。對裝置運行能源的計算對比表明,在催化氧化工段,液化天然氣(LNG)是最經(jīng)濟的能源。
因涂裝、彩色印刷與塑膜復合工序中使用大量溶劑型油墨與稀釋用有機溶劑等物質(zhì),我國每年僅包裝行業(yè)揮發(fā)性有機化合物(VOCs)的排放量可達約200萬~300萬t,所產(chǎn)生的VOCs廢氣通常采用活性炭吸附、光催化、等離子、催化氧化/蓄熱式催化氧化(CO/RCO)、蓄熱式焚燒(RTO)等方法進行治理,其中又以催化氧化法與焚燒法最為普及。
包裝廢氣具有以下特點:(1)廢氣成分復雜,含有多種有機物質(zhì);(2)油墨干燥時,由于需要嚴格控制生產(chǎn)車間的廢氣質(zhì)量濃度,通常引入較大風量來進行通風,因此所產(chǎn)生的VOCs廢氣風量大、質(zhì)量濃度低。傳統(tǒng)催化氧化或焚燒裝置適用于處理不同風量的中高質(zhì)量濃度VOCs廢氣,設備大小主要取決于其自身的最大處理風量。但在處理大風量低質(zhì)量濃度的VOCs廢氣時,采用單一催化氧化或焚燒方法需要龐大的裝置,不僅一次設備的投資成本高,而且會大幅增加后續(xù)燃料的運行成本。因此實際處理中需引入沸石轉輪技術,先對大風量低質(zhì)量濃度VOCs廢氣進行吸附,將其濃縮為小風量高質(zhì)量濃度的氣體后再進行催化氧化處理。
隨著新環(huán)保法規(guī)的修訂出臺與各地對VOCs排放限制的嚴控,行業(yè)對VOCs治理設備提出了更高的要求。相比于單一VOCs廢氣處理設備,沸石轉輪-催化氧化組合裝置具有設備體積小、去除效率高、安全性與經(jīng)濟性良好的多重優(yōu)勢,這也將是未來VOCs廢氣治理裝置的主流發(fā)展方向。
01
沸石轉輪-催化氧化裝置原理
目前國內(nèi)包裝行業(yè)廢氣具有排放風量大、質(zhì)量濃度低、廢氣成分復雜等特點,且一般為有組織排放。對于大風量低質(zhì)量濃度VOCs廢氣而言,僅通過催化氧化或焚燒裝置單獨進行處理時,一次設備的投資費用大,后期運行成本較高;采用沸石轉輪-催化氧化技術的VOCs廢氣處理裝置可先對大風量低質(zhì)量濃度的廢氣進行分離濃縮,使其形成高質(zhì)量濃度、小風量的氣體后再進行催化氧化處理。
1.1沸石轉輪-催化氧化裝置工藝流程
VOCs沸石轉輪-催化氧化裝置采用沸石濃縮與催化劑氧化組合技術,由多級過濾器、沸石轉輪、吸附風機、脫附風機、換熱器、催化氧化裝置等分段設備組成,具體見圖1。
含有VOCs的有機廢氣先經(jīng)過初步多級過濾后,由鼓風機送至沸石轉輪分段裝置吸附區(qū)(A區(qū))進行吸附處理,生成的潔凈空氣被直接排出。隨著沸石轉輪的不停旋轉,已飽和的轉輪吸附區(qū)部分轉至再生區(qū)(R區(qū)),接受來自反向高溫再生空氣的吹洗并進行脫附。脫附后的高質(zhì)量濃度有機廢氣直接進入催化氧化裝置進行氧化分解。經(jīng)過脫附區(qū)的VOCs廢氣隨后旋轉進入冷卻區(qū)(P區(qū)),降溫后返回吸附區(qū)進行循環(huán)操作。由于脫附再生區(qū)的空氣風量一般僅為處理區(qū)風量的1/10,因此再生后廢氣中的VOCs質(zhì)量濃度約為濃縮前的10倍。
沸石轉輪再生濃縮后的高質(zhì)量濃度有機廢氣被吹入下游催化氧化裝置,并由燃燒器對其進行升溫,預熱至350℃后進行催化氧化反應。催化氧化全過程采用蜂窩狀鉑(Pt)觸煤,廢氣中VOCs經(jīng)催化氧化反應生成無毒無害的二氧化碳與水。
通過催化氧化工段后,被排出的凈化氣體溫度約為360℃;為充分利用余熱,將催化氧化設備凈化后的氣體與再生用廢氣進行熱交換,升溫后的再生廢氣用于沸石轉輪脫附區(qū)的脫附。
1.2沸石轉輪濃縮分段裝置結構與原理
1.2.1沸石轉輪的結構與組成
當廢氣具有大風量低質(zhì)量濃度的特性時,可利用沸石轉輪內(nèi)部分子篩低溫高吸附與高溫高脫附的特點,對有機廢氣進行吸附-脫附濃縮。所產(chǎn)生廢氣的質(zhì)量濃度約為原氣體質(zhì)量濃度的10~20倍,為后續(xù)催化氧化處理節(jié)約了設備與運營成本。
沸石濃縮轉輪結構分為吸附區(qū)(A區(qū))、再生區(qū)(R區(qū))與冷卻區(qū)(P區(qū))。由加工好的波紋形以及平板狀陶瓷纖維紙采用無機黏合的方式制成蜂窩狀轉輪,再將具有疏水性的沸石分子篩涂抹在轉輪通道上,使其具有吸附性。沸石分子篩的化學通式為Mx/m[(AlO2)x·(SiO2)y]·zH2O,是一種結晶硅酸鋁金屬鹽的多孔晶體,其中的硅氧四面體和鋁氧四面體通過共享氧原子相互連接形成骨架結構。分子篩晶體的內(nèi)部具有不同大小的孔穴,可以吸附比自身孔徑小的分子,排出比其孔徑大的分子。包裝印刷行業(yè)廢氣的相對濕度一般小于70%,沸石轉輪對VOCs的吸附率可達到90%以上。隨著廢氣相對濕度的增加,吸附效率會有所下降,因此,必要時可在廢氣進入沸石轉輪前對其進行加熱除濕。根據(jù)風量,設置沸石轉輪以1~6r/h的速率進行旋轉。
1.2.2沸石轉輪適用風量與VOCs質(zhì)量濃度
針對不同VOCs質(zhì)量濃度的廢氣,所采用的處理方式不盡相同,而沸石轉輪常被用于大風量低質(zhì)量濃度有機物廢氣的濃縮處理。不同質(zhì)量濃度VOCs氣體的處理方法見表1。
對于VOCs質(zhì)量濃度低于600mg/m3的大風量廢氣,采用沸石轉輪濃縮裝置可達到后續(xù)節(jié)能處理的目的。根據(jù)目前轉輪的直徑與厚度,在質(zhì)量濃度低于600mg/m3的情況下,可處理風量范圍為0.4~18m3/h。
1.2.3沸石轉輪對包裝印刷廢氣中VOCs的吸附曲線
包裝行業(yè)廢氣中主要含有鄰二甲苯、異丙醇、乙酸乙酯、己二酸等苯系物,醇類及酯類物質(zhì),因此需要對沸石轉輪上的疏水性分子篩進行吸附效率評價。根據(jù)吸附效率與時間的關系對沸石轉輪分子篩的吸附性能進行了相關實驗,分別采用質(zhì)量濃度為500mg/m3的苯系物、400mg/m3的醇類物以及300mg/m3的酯類物質(zhì)作為處理廢氣成分。結果見圖2。
圖2表明,對于包裝行業(yè)廢氣中含有的VOCs物質(zhì)(即苯系物、醇類與酯類物質(zhì)),疏水性分子篩均能進行有效吸附。
1.3催化氧化分段裝置結構與原理
催化氧化分段裝置采用貴金屬Pt作催化劑,對沸石轉輪處理后的高質(zhì)量濃度廢氣進行預熱并將其催化氧化分解。其原理在于借助催化劑降低反應活化能,使得氧化反應發(fā)生在較低的起燃溫度(250~400℃)。由于待處理廢氣中可能含有使催化劑中毒的物質(zhì)(含硫、磷、硅等元素的化合物),因此需在前端設置預處理工序,即采用陶瓷為載體的前處理劑(見表2)對使催化劑中毒的物質(zhì)進行攔截。當進入催化劑室的高質(zhì)量濃度廢氣溫度較低時,可通過燃燒器對其進行預熱,使溫度上升至350℃;由于該溫度為氧化催化劑最佳活性溫度,此時VOCs的處理效率可達95%以上。
溫度不同時,催化劑對VOCs的處理活性效率也不同,因此需要尋找催化劑的最佳使用溫度。根據(jù)VOCs廢氣中含有的主要有機揮發(fā)物(正己烷、二甲苯、苯、乙醇等物質(zhì)),在不同入口溫度條件下對其進行轉化率測試評價,結果見圖3。
由圖3可知,在350℃下,主要的揮發(fā)性有機物質(zhì)基本可被催化劑氧化去除。
02
包裝行業(yè)廢氣的組成與測試排放標準
2.1包裝行業(yè)VOCs廢氣主要成分
包裝行業(yè)所產(chǎn)生的VOCs廢氣中主要含有鄰二甲苯、異丙醇、甲氧基丙醇、乙酸乙酯、乙酸丙酯、己二酸等苯系物、酯類與醇類物質(zhì)。
2.2包裝行業(yè)測試排放標準
當前我國各省采用的VOCs控制標準不盡相同,最常用的標準為天津地標DB12/524—2014《工業(yè)企業(yè)揮發(fā)性有機物排放控制標準》,其中對苯、甲苯、二甲苯與VOCs的排放要求見表3。相應測試方法采用HJ734—2014《固定污染源廢氣揮發(fā)性有機物的測定固相吸附-熱脫附/氣相色譜-質(zhì)譜法》,其中VOCs測試內(nèi)容為24項:丙酮、異丙醇、正己烷、乙酸乙酯、苯六甲基二硅氧烷、3-戊酮、正庚烷、甲苯、環(huán)戊酮、乳酸乙酯、乙酸丁酯(醋酸丁酯)、丙二醇單甲醚乙酸酯、乙苯、對/間二甲苯、2-庚酮、苯乙烯、鄰二甲苯、苯甲醚、苯甲醛、1-癸烯、2-壬酮、1-十二烯等。
03
沸石轉輪-催化氧化裝置的效果分析與經(jīng)濟性對比
3.1應用案例
某包裝生產(chǎn)線所排放的廢氣中含VOCs,質(zhì)量濃度約為53.03mg/m3,風量為m3/h,當?shù)夭捎肈B12/524—2014,分別對苯、甲苯、二甲苯、VOCs進行排放限制。
由于包裝生產(chǎn)線VOCs廢氣的質(zhì)量濃度偏低(<600mg/m3),需采用沸石轉輪-催化氧化裝置對廢氣進行濃縮后再作加熱催化氧化處理。6條生產(chǎn)線入口風量Q1=m3/h,每天生產(chǎn)16h,工作日按330d/a計算,那么每年排放的VOCs的總量約為:m總=53.03mg/m3×m3/h×5280h≈4.2t/a。經(jīng)沸石轉輪-催化氧化裝置處理前后的廢氣VOCs質(zhì)量濃度見表4。
根據(jù)實際測量結果可知,沸石轉輪-催化氧化裝置對大風量低質(zhì)量濃度包裝印刷廢氣中VOCs的去除效率高達98.01%,處理后的氣體符合允許排放質(zhì)量濃度的要求。
3.2不同燃料經(jīng)濟性對比
沸石轉輪-催化氧化設備中的催化氧化工段可采用液化天然氣(LNG)、液化石油氣(LPG)或電能作為裝置運行能源,因此長期使用時需對裝置運行的經(jīng)濟性作評價對比,尋找最經(jīng)濟的使用能源。由于沸石轉輪工段均采用電能,因此僅對催化氧化工段的運行能源進行計算??紤]到氣體經(jīng)過沸石轉輪后溫度上升、風量大幅減小,所計算出的數(shù)值差異小、參考性較弱,因此按原入口氣體溫度與風量對催化氧化工況進行放大對比計算。
包裝生產(chǎn)線廢氣(有組織排放)的排放量:m3/h;VOCs初始質(zhì)量濃度:53.03mg/m3(主要成分為丙酮、甲苯、乙酸乙酯等);運行天數(shù)為330d/a;日運行時間為16h,其中裝置啟動時間為30min;催化氧化段用熱值為.84kJ/m3;LNG的價格為3.6元/m3,LPG的價格為4.2元/kg,電能的價格為0.7元/(kW·h)。
工況:入口氣體溫度T1=28℃,處理設備一次換熱氣體溫度T2=218℃,催化氧化后氣體溫度T3=360,廢氣余熱利用換熱后出口溫度T4=170℃。換熱溫度差值詳見圖4。
設需要熱量為Q;LNG使用量為G;LPG使用量為P;電能消耗為E。則:
Q=250(m3/min)×60(min/h)×(360-218)℃×1.293(kg/m3)×1.005[kJ/(kg·℃)]=.45kJ/h
G=.45(kJ/h)/.84(kJ/m3)=75.1m3/h
費用G1=75.1(m3/h)×3.6(元/m3)×330(d/a)×24(h/d)=元/a
P=.45(kJ/h)/.44(kJ/m3)×1.96(kg/m3)=106.78kg/h
費用P1=106.78(kg/h)×4.2(元/kg)×330(d/a)×24(h/d)=元/a
E=.45(kJ/h)/3600.68(kJ/kW)=768.6kW/h
費用E1=768.6(kW/h)×0.7[元/(kW·h)]×330(d/a)×24(h/d)=元/a
G1∶P1∶E1=1∶1.7∶2
不同能源的運行費用對比結果表明,采用LNG為原料時催化氧化工段的設備經(jīng)濟性最佳。
沸石轉輪-催化氧化裝置在初期投資與能源消耗方面具有明顯的經(jīng)濟優(yōu)勢,并且裝置的低溫燃燒安全性好,催化劑的使用壽命長,大大降低了裝置維護成本。
04
結語
針對大風量低VOCs質(zhì)量濃度的包裝涂裝廢氣治理,沸石轉輪-催化氧化一體型凈化裝置具有高效、安全、經(jīng)濟的特點,對廢氣中苯系物、酯類、醇類物質(zhì)的吸附效率可達90%~97%。沸石轉輪用分子篩材質(zhì)不可燃、安全性好,可在高溫下進行脫附再生,其使用壽命長達5~10年。催化氧化工段所采用的氧化催化劑VOCs處理效率高(95%~98%),對于間歇性工況廢氣,催化氧化比蓄熱式催化燃燒法更加節(jié)能。氧化反應采用的催化劑使用壽命長,平均5年更換一次,并可作再生處理。整體裝置采用低溫燃燒,既節(jié)約能源又具有極高的安全性。但使用過程中也需防止諸如因滾輪內(nèi)積聚高質(zhì)量濃度VOCs而導致悶燒等情況的發(fā)生,因此需要對設備進行監(jiān)控與保養(yǎng)。
在工業(yè)迅速發(fā)展及環(huán)境保護形勢日益嚴峻的今天,沸石轉輪-催化氧化裝置將會得到更廣泛的認可及應用。
責任編輯: